
Meet the Sound Sensor

databot[™]'s **sound** sensor is an omnidirectional MEMS (Micro Electrical Mechanical System) microphone that sips low amounts of power while converting **sound** waves to digital data. As a multipurpose microphone, it is used in a number of consumer and business-type applications including smartphones, teleconferencing systems, video cameras, and more.

What Does it Measure?

The sound sensor measures sound intensity. Sound intensity is what we typically think of as "loudness." If you look at an illustration of a sound wave "amplitude" corresponds to intensity. The higher the amplitude, the louder the sound!

How Does it Work?

A MEMS microphone works on the principle of a pressure-sensitive membrane that is mounted to a silicon wafer. The pressure of the sound waves is transmitted by the membrane to the chip and converted to electrical signals.

What Are the Units for Sound?

Sound intensity is measured in units called decibels. The decibel scale is logarithmic, which means doubling the decibel units does not double the output, it can increase as much as 100 times!

Decibels (dB)	Common Sound
60 dB	Normal conversation.
30 dB	Soft whisper.
85 dB	lawn-mower.

Important Terms

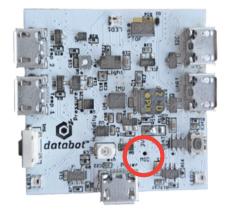
Sound: Continuous vibrations that travel from one medium such as air or water to another.

Sound Intensity: Intensity is determined by two factors: 1) the **amplitude** of the **sound waves**; and 2) how far they have traveled from the source of the **sound**.

Amplitude: The strength or level of sound pressure.

Grades:	6 & Up
Time:	15 Minutes
Subject:	Physics, To
Topics:	Sound, So
	Decihels <i>I</i>

6 & Up 15 Minutes - PDQ 1 & 2 Physics, Technology Sound, Sound Intensity, Decibels, Amplitude


What You Will Need/Prep

- databot[™] 2.0 & a smart device (iOS or Android).
- Read the Vizeey[™] Fast Start Guide and install Vizeey[™] if you haven't already.
- Scan the QR code for Sound Intensity if you don't have it already.

Where Does it Live?

The **sound** sensor is a bottom-mounted sensor so it is on the other side of the PCB. However, it needs a hole for sound to enter. Look for the label Mic on your databot[™]!

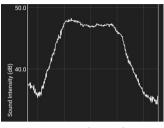
Bot Basics

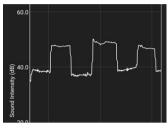
PDO1 : Etch a sketch with Sound!

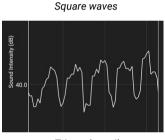
Sound

Prepare to experiment with your sound levels and watch the image that is generated by the graphic display. Can you draw shapes with the sound of your own voice? Let's explore and find out!

- 1. Tap on Sound Intensity in Vizeey[™] to load the experiment & use these icons to start and pause the experiment: ► II
- 2 Begin the experiment and do some free form sound trials to see how sound intensity affects the display. Try different orientations with your device and try expanding the display until you have a display you are comfortable with.
- 3. Challenge 1: Control your voice and sound such that your data draws a round mound.
- 4. Challenge 2: Holding the same sound intensity will display a flat line. Draw square waves by varying your sound intensity.
- 5. Challenge 3: Create triangular spikes in your display by varying your sound intensity.


Now, with your new found skills in drawing with sound, create an original drawing that is recognizable by others. Good luck!

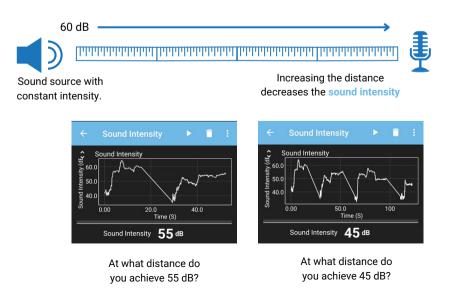

Increase your voice to increase the amplitude



Decrease your voice to reduce the amplitude

Round mound

Triangular spikes


PDO2 : Sound Intensity Vs Distance

In this PDQ, use the Sound Intensity experiment to visualize how sound intensity varies as you get closer or move farther away from the source. Record the distance required to achieve a dB level of 60, 55, 50, and 45. Can you predict the sound level at a particular distance based on your experimentation? Test your hypothesis and record your findings.

Tap on Sound Intensity in Vizeey[™] to load 1. the experiment & use these icons to start and to pause the experiment:

- 2. Devise a constant sound source like a tone generator app on a phone and lay out a tape measure. Set databot™ on the measure at a distance that records an intensity of 60 dB.
- 3. Move databot[™] away from the sound source to reduce the sound intensity to 55 dB. Note the distance.
- Move again until the sound intensity reads 4 50 dB. Note the distance on your tape.
- Predict the distance required to achieve 45 5. dB. Now move databot[™] to that point - were you successful in your prediction?

